Directional Atherectomy For Complex Femoropopliteal Artery Disease Where Are We, And How To Do

Ravish Sachar MD UNC REX Healthcare Raleigh, NC, USA

Disclosure

Ravish Sachar, MD

I have the following potential conflicts of interest to report:

- Consulting Medtronic, Boston Scientific
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company Contego Medical
- Other(s)
- I do not have any potential conflict of interest

What is Complex Fem-pop Disease?

- Severe calcium
- Chronic total occlusions (CTOs)
- Complex lesions (TASC C and D)
- Long lesions
- In-stent restenosis
- Thrombus

- Increased chance of bailout stenting
- Increased rate of complications
- Negatively impact stent expansion
- Likely reduce the effectiveness of anti-proliferative drugs
- Adversely affect long term outcomes

Unique Benefits of **Directional Atherectomy for Complex** Disease

Remove Plague and Calcium

- Improves vessel compliance
- Lower risk of re-occlusion due to
- Lower risk of dissection/bailout stenting
- Directionality allows treatment of lesions and sparing of healthy tissue
- Maximize lumen gain
 - Flow increases exponentially as radius of the vessel increases

$$Q = \frac{\pi \operatorname{Pr}^4}{8\eta l}$$

Poiseuille's Law

DEFINITIVE LE

Directional Atherectomy: Definitive LE Study

*1 censored due to informed consent violation

Primary Patency Claudicant Cohort

Primary Patency: Stenosis vs. Occlusion

	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)
All Claudicants (n= 743)	78%	7.5
Lesion type		
Stenoses (n=611 lesions)	81%	6.7
Occlusions (n=128 lesions)	64%	11.1

Primary Patency by TASC Classification Claudicant Cohort (PSVR ≤ 2.4)

	Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)
All (n=743)	78%	7.5
TASC Classification		
TASC A (n=440)	81%	4.6
TASC B (n=212)	71%	9.9
TASC C (n=85)	72%	16.5

12 Month Patency for Atherectomy Only in the Fem-Pop Segment

Dave J. Endovasc. Ther. 2009;13:665-675
Zeller et al. J Endovasc. Ther. 2009;16:653-662
Patency data for CSI is not available

Lesion Length

Patient Referred For Bilateral LE Claudication

Case #1 Patient History

- 78 y/o male
- RCC 3 symptoms
- Hx of tobacco use, s/p cessation 3 years ago
- CAD, s/p CABG
- HTN
- Dyslipidemia

Left SFA Heavily Calcified CTO With Infrapop Disease

Procedural Angiograms

6 mm SpiderFX[™] embolic protection device delivered via 4F Navicross^{™*} catheter

6 mm SpiderFX[™] embolic protection device

Directional Atherectomy: HawkOne[™] LX directional atherectomy system

10868452DOC

Good enough result after DA, or are more passes needed?

TCTAP 2019

Angiogram after Additional Atherectomy + DCB

CASE #2: LEFT LLE CLI

- 55 year old man
- DM, HTN, hyperlipidemia, CAD, PAD s/p right SFA stenting 10 years ago
- Left anterior shin wound after trauma nonhealing x 6 months despite wound care
- ABI on left 0.6 with monophasic waveforms at the ankle

Initial angiography – short SFA occlusion – 3 vessel runoff

Left superficial femoral artery

Plan for Intervention:

- 7F 45cm crossover sheath
- Cross occlusion with wire/catheter techniques
- 7mm SpiderFX[™] Filter deployed in distal popliteal vessel above the trifurcation
- HawkOne[™] LX device

LEFT SFAOCCLUSIONLao45Rao30

Intraluminal crossing with wire/catheter

7MM SpiderFX[™] FILTER DELIVERED THROUGH A TRAILBLAZER[™] CATHETER

ANGIO Before And After Dotter WITH DEVICE – Rao 20 DEGREES

Torque THE DEVICE MEDIAL (SCREEN LEFT) – RAO 20 DEGREES

SHAVE MEDIAL - RAO

SHAVE MEDIAL - RAO

SHAVE MEDIAL - RAO

ANGIO After medial cut - RAO

Torque THE DEVICE LATERAL (SCREEN RIGHT)- RAO

SHAVE LATERAL RAO

SHAVE LATERAL RAO

SHAVE LATERAL RAO

ANGIO After lateral cut RAO

MARK THE SCREEN FOR PRECISE DIRECTIONALITY - RAO

ADDITIONAL CUTS LATERAL (PROXIMALLY) AND MEDIAL (DISTALLY) RAO

After THOSE 2 CUTS - RAO

Rotate Camera Lao 30 For Orthogonal View

CUT SCREEN LEFT - LAO

CUT SCREEN LEFT - LAO

CUT SCREEN LEFT - LAO

6.0 X 120MM In.PACT[™] Admiral [™] DCB AT 4 ATM

LAO

RAO

Final angio

Directional Atherectomy

- Versatile for complex femoro-popliteal disease
- Directionality allows treatment of diseased segments without disturbing other areas
- Large luminal gains are possible

Distal Embolization Variation in DE Rates by Procedure & Methods

Shrikhande et al. 2011 (Total N=2137) *Angiographically significant DE requiring treatment

Shammas et al. 2008 (Total N=40 high risk) *Filters with macrodebris Lam et al. 2007 (Total N=60) *Doppler signals

Patient Factors	Lesion Factors
Critical limb ischemia ^{3,20}	Occlusion ^{1,2,8,9,10,11}
No / Fewer runoff vessels ^{1,10}	TASC-D ^{1,9,10,11}
Tissue loss ¹	Thrombus ^{2,8,9,10}
Prior amputation ¹⁰	Calcium ^{1,10}
Acute onset of symptoms ¹⁰	Longer length ^{2,8,10}
Current smoker ¹	Larger diameter ^{2,8}
Metabolic syndrome ¹	Reduced TIMI flow ¹⁰
Female ¹	Below-the-knee ⁹

Davies MG. Ann Vasc Surg. 2010;24(1):14-22.
Kambatidia D. J. Endouago Theo. 2006;12(2):260.2

Shammas NW. J Endovasc Ther. 2008;15(3):270-2

Shammas NW. Vasc Dis Mgt. 2009; 6(3):58-61.
Shammas NW. Unvasive Cardiol 2009;21(12):628-

Shammas NW. J Invasive Cardiol. 2009;21(12):628
Shrikhande GV. J.Vasc Surg. 2011;53(2):347-352

TCTAP2019

Summary

- Directional atherectomy requires a learning curve and appropriate patient selection
- Directional atherectomy is versatile and can treat the majority of complex fem-pop disease
- Use embolic protection in all but the most simple lesions
- Long term outcomes in the fem-pop segment with stand alone directional atherectomy are satisfactory
- Still need better data on atherectomy + DCB

